

Surviving the Impact: Core Quality Testing in a New Orbiting Sample Container for Potential Mars Sample Return

Scott Perino*, Chad Truitt, Darren Cooper, and Tom Komarek

*scott.perino@jpl.nasa.gov

Jet Propulsion Laboratory,
California Institute of Technology

International Planetary Probe Workshop 14
June 12th – 16th 2017

© 2017 California Institute of Technology, Government sponsorship acknowledged

Potential MSR Overview

- Mission Concepts
- Notional landing site

Introduction

ADT Impact Test Stand

Test Hardware & Instrumentation

- Sample tubes
- A representative Orbiting Sample (OS) container
- An 'Earth Entry Vehicle (EEV) like' penetrator

Impact Testing

Results

- Kinematics
- Core Quality

Conclusion

M. Munk, L. Glaab, Mars Sample Return Earth Entry Vehicle: Continuing Efforts. Concepts and Approaches for Mars Exploration. 2012

This presentation focuses on impact testing of fragile 'Mars like' core samples at JPL

Notional Earth Impact Scenario

- Notional MSR EEV would impact land at the Utah Testing and Training Range (UTTR)
- Large controlled area with consistent & soft clay soil called 'playa'
- 5 sigma landing ellipse would fit inside the range
- Anticipated EEV impacts velocity range: 30 50 m/sec
- Impact on the playa estimated to impart up to 1300 G on the representative EEV, OS, and tubes

Pre-Decisional Information — For Planning and Discussion Purposes Only Photo from Google Maps **Bonneville Salt Flats** The Great Salt Lake Salt Lake City, UT **Approximate UTTR** area **Assumed** 5σ EEV **Landing Ellipse** Photo from about the center of the landing ellipse June 12, 2017

Test Goal

- Study the affect of a notional Earth impact landing on the potential future Mars samples and sample tubes
- Determine if tube orientation during impact affects core quality.

Approach

- Impact testing on the samples of the softest 'Marsreference' rocks
- Conduct testing in the most realistic environment possible
 - Realistic soft soil impact conditions
 - Realistic/representative EEV, OS, and Tube hardware
 - Rock cores created using Mars 2020 developmental coring drill

Jet Propulsion Laboratory

California Institute of Technology

ADT Impact Tower at JPL

26 m tall truss frame tower with pneumatic accelerator

system

- Pneumatic piston-cable system demonstrated to accelerate penetrators up to 67 m/s / 140 kJ KE
- 27x impact tests conducted with various penetrators up to 140 kg
- Soil conditions fully controllable
- High speed video of all tests for model correlation

Pre-Decisional Information — For Planning and **Discussion Purposes Only**

Reusable 'EEV-Like' Penetrator

- Represents a nominal PICA EEV design
- Total vehicle mass is 41 kg
- Energy absorbing foam encapsulates the OS

Base EEV image above modified from NASA Langley Multi-Mission System Analysis for Planetary Entry (M-SAPE) Code

OS-3E Instrumented Test Article

- 27 cm & 12.0 kg
- Capable of holding up to 36 tubes
- Fully contained instrumentation
- 3-axis shock recorder in base
- Includes DAS & battery pack

2x Instrumented Tubes

- 3-axis shock accel in each tip
- Contain soft 'Mars reference' rock cores made of Old Dutch Pumice
- Structurally analogous to previous gen. Mars 2020 sample tubes

Soil Bed

- A 2 m x 2 m x 1 m box filled with Rosamond, CA dry lake bed soil, similar to UTTR soil
- Saturated to 25-35% water content
 –muddy, similar to UTTR.

Pre-Decisional Information — For Planning and Discussion Purposes Only

Instrumented Test Penetrator

Mars Formulation

Instrumented OS-3E Test Article

Mars Formulation

OS-3E Test Article Photos

Mars Formulation

Disassembled OS Canister & instrumented tubes

Pre-Decisional Information — For Planning and Discussion Purposes Only

Instrumented Sample Tube

Mars Formulation

Mars 2020 **Tube CAD**

Representative

Endevco 7274-6k **Shock Accel**

Instrumented 'M2020 like' threaded* plug

Pre-Decisional Information — For Planning and Discussion Purposes Only

Plug

Seal

Impact Test Video – Full speed

Mars Formulation

Test 1C – 47.8 m/s impact speed – Tubes 'Vertical'

Impact Test Video - Slow Motion

Mars Formulation

- Test 1C
- 47.8 m/s impact speed
- Tubes 'Vertical'

Time: 0.0

ADT IMPACT TEST 1C

19 January, 2017
ACCELERATED DROP, 41KG
WITH SAMPLE TUBES
IMPACT APPROX. 107 MPH (47.8 M/SEC)
EAST CAMERA VIEW

RECORDED: 4000 FPS PLAYBACK: 30 FPS

Test 1C Acceleration Results

Mars Formulation

- Target OS load was very close to the intended 1300 G requirement.
- Vehicle accel data not reported due to damage to that accel, also the Tube 1 accel plug was damaged at ~2.5 ms and so there is no good data after that.
- Because in the 90° orientation tubes are baded axially and siting on a crushable foam base, minimal-to-no load intensification was observed at the tube tips.

Results: Test C1, 90°0 rientation

Mars Formulation

Exterior Tube, Sample WRC-09

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	9.276	0	0.057	4	0	9
Post- impact	8.925	0.21	0.019	3	1	6

Pre-Insertion

Post-Extraction

Interior Tube, Sample WRC-05

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	9.296	0.507	0.355	6	2	26
Post- impact	6.096	0.987	0.59	5	7	38

Pre-Insertion

Post-Extraction

Pre-Decisional Information — For Planning and Discussion Purposes Only

June 12, 2017

Test 1C Acceleration Results

Mars Formulation

- Again, target OS load was very close to the intended 1300 G requirement.
- For the 0° orientation, tubes are in a semi-restrained cantilevered configuration: a 0.7 mm radial gap between the tube tip and its radial restraint is needed for tube insertion into OS
- That gap at the tube tips and the cantilevered motion, generate secondary impact loads at the tips which exacerbate peak loading near the tube seals.
- Both tubes experience significant impact load intensification (upto 3X increase) due to this issue.

Jet Propulsion Laboratory

Exterior Tube, Sample WRC-15

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	8.32	0	0	4	0	0
Post- impact	8.102	0	0	4	0	0

Pre-Insertion

Post-Extraction

Interior Tube, Sample WRC-11

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	11.193	0	0.026	3	0	6
Post- impact	9.139	0	0	4	0	0

Pre-Insertion

Summary

 Mars ADT conducted 7 realistic soft soil impact tests using prototype future mission MSR hardware to determine if sample orientation and impact loads affected sample quality

The preliminary findings from this limited test campaign are:

- 1. Although all samples experienced some damage, the amount of damage was small and found to not significantly degrade their scientific value (RSS Board conclusion)
- 2. Impact loads at the tube tips (near the hermetic seal) were not significantly intensified above 1300 G in the vertical 90 °OS/tube orientation, but were magnified by up to 3x for the 0 ° orientation
- 3. Despite higher tube tip loads, no scientifically significant difference in damage levels were observed for each orientation tested
- 4. A correlation between pre-test core quality and impact induced damage was observed: ie. High quality samples were damaged less by impact than low quality (highly fractured) samples.
- Based off this testing and other factors, the ADT & the JPL Mars Formulation
 Office have adopted the vertical 90°OS/tube orientation as the baseline
 configuration for potential EEV Earth return.
- Dynamic model correlation is underway and will be presented at a future time

Thank you to the team!

Thank you.

Surviving the Impact: Core Quality Testing in a New Orbiting Sample Container for Potential Mars Sample Return

Scott Perino, Chad Truitt, Darren Cooper,

&

Tom Komarek

Jet Propulsion Laboratory,
California Institute of Technology

© 2016 California Institute of Technology, Government sponsorship acknowledged

International Planetary Probe Workshop 14

June 12th – 16th 2017

Backup

June 12, 2017

9x tests were planned, but due to time constraints only 7x were completed. All tests had, as much as possible, identical test conditions (impact velocity & soil condition)

Pneumatic Accelerator System

Mars Formulation

Impact Testing and Analysis

Mars Formulation

All 14 penetrometer impact tests were modeled in LS-DYNA

Surface and sub-surface soil properties were modeled separately

A broad range of soil and penetrometer impact conditions were evaluated

The OS has two main components

- OS Shell: Would be secured to top of MAV before SRL launch from Earth
- 2. OS Canister: Would launch empty as part of fetch rover/Mobile MAV

Sub Assembly	Material(s)	Mass (kg)
OS Shell	Aluminum, Titanium, Torlon	5.7
OS Canister	Aluminum, Titanium, CRES	3.1
Beacon Electronics and Batteries	Silicon, Aluminum, Other	0.3
Atmospheric Sample Tanks	Aluminum, Other	0.3
Soil Sample Tubes	Titainum, Other	2.6
Total OS Mass		12.0

This OS was designed as an impact test article, and thus was sized specifically to weigh 12 kg (NTE mass) Mass reductions are already underway

3 Phases to Secure OS for Launch

Torque applied: claw

Mars Formulation

 Canister would be inserted into shell

2. Flexure claw would latch onto rod

Pre-impact

Post-impact

Exterior Tube, Sample WRC-18

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	10.092	0	0	2	0	0
Post- impact	9.831	0.069	0.044	3	1	3

Pre-Insertion

Post-Extraction

Interior Tube, Sample WRC-17

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	9.032	0	0	2	0	0
Post- impact	9.774	0	0	3	0	0

Pre-Insertion

Exterior Tube, Sample WRC-24

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	10.0198	0	0	2	0	0
Post- impact	9.994	0	0.005	2	0	1

Pre-Insertion

Post-Extraction

Interior Tube, Sample WRC-20

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	11.021	0	0	2	0	0
Post- impact	10.108	0.286	0.14	3	4	12

Pre-Insertion

Exterior Tube, Sample WRC-08

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	8.977	0	0	1	0	0
Post- impact	8.867	0	0.054	5	0	2

Pre-Insertion

Post-Extraction

Interior Tube, Sample WRC-02

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	9.903	0.17	0.062	5	3	9
Post- impact	9.978	0	0	4	0	0

Pre-Insertion

Exterior Tube, Sample WRC-52

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	9.039	0.26	0.089	1	2	4
Post- impact	8.819	0	0	1	0	0

Pre-Insertion

Post-Extraction

Interior Tube, Sample PEC-219

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	8.983	0	0.006	2	0	1
Post- impact	8.831	0	0.012	3	0	2

Pre-Insertion

Exterior Tube, Sample EDT-056

SCS Data

	Mass Not Passing 10 mm (g)	Mass Not Passing 5 mm (g)	Mass Not Passing 2 mm (g)	# Pieces Not Passing 10 mm	#Pieces Not Passing 5 mm	# Pieces Not Passing 2 mm
Pre - impact	9.334	0.233	0.076	7	1	6
Post- impact	2.148	2.701	0.763	3	13	52

Interior Tube, Sample EDT-044

(SCS Data Pending)

